Interaction of the hypothalamic paraventricular nucleus and central nucleus of the amygdala in naloxone blockade of neuropeptide Y-induced feeding revealed by c-fos expression.

نویسندگان

  • J D Pomonis
  • A S Levine
  • C J Billington
چکیده

Neuropeptide Y (NPY) is a powerful inducer of food intake with a key site of action in the paraventricular nucleus (PVN) of the hypothalamus. An effective method for inhibiting the effects of NPY is pretreatment with the opioid antagonists naloxone or naltrexone. In the present study, we used immunohistochemistry for cFos as a marker of neuronal activity to map the effects of PVN-injected NPY and blockade of these effects by peripheral injection of naloxone. Injection of NPY into the PVN resulted in an increase in food intake that was blocked by peripheral administration of naloxone. PVN NPY also resulted in increased cFos immunoreactivity (cFos-IR) in the PVN independent of food intake, and although peripheral naloxone inhibited NPY-induced feeding, it did not alter cFos-IR in the PVN. cFos-IR in the central nucleus of the amygdala (CNA) increased in response to both NPY and naloxone. Furthermore, the response to NPY and naloxone was additive, suggesting that peripheral naloxone and PVN NPY activate different neuronal populations in the CNA. Three other brain regions, the nucleus of the solitary tract, the ventrolateral medulla, and the supraoptic nucleus, all showed increases in cFos-IR in this study, but these changes came only as a result of increased food intake after PVN-injected NPY. The current data suggest that the CNA is a site important for the integration of the NPY and opioid systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Peptides that regulate food intake: appetite-inducing accumbens manipulation activates hypothalamic orexin neurons and inhibits POMC neurons.

Corticolimbic circuits involving the prefrontal cortex, amygdala, and ventral striatum determine the reward value of food and might play a role in environmentally induced obesity. Chemical manipulation of the nucleus accumbens shell (AcbSh) has been shown to elicit robust feeding and Fos expression in the hypothalamus and other brain areas of satiated rats. To determine the neurochemical phenot...

متن کامل

Inhibition of Neuropeptide Y (NPY)-Induced Feeding and c-Fos Response in Magnocellular Paraventricular Nucleus by a NPY Receptor Antagonist: A Site of NPY Action1.

Neuropeptide Y (NPY) is one of the important endogenous orexigenic peptides. In these studies we employed c-Fos immunostaining and a selective NPY Y1 receptor antagonist to identify the site of action of NPY in the hypothalamus. The results showed that intracerebroventricular administration of NPY stimulated feeding and increased immunostaining of c-Fos, a product of the immediate early gene c-...

متن کامل

Reversal Effect of Intra-Central Amygdala Microinjection of L-Arginine on Place Aversion Induced by Naloxone in Morphine Conditioned Rats

Background: Role of nitric oxide (NO) on expression of morphine conditioning using a solely classic task has been proposed previously. In this work, the involvement of NO on the expression of opioid-induced conditioning in the task paired with an injection of naloxone was investigated. Methods: Conditioning was established in adult male Wistar rats (weighing 200-250 g) using an unbiased procedu...

متن کامل

Opioid receptor blockade in rat nucleus tractus solitarius alters amygdala dynorphin gene expression.

It has been suggested that an opioidergic feeding pathway exists between the nucleus of the solitary tract (NTS) and the central nucleus of the amygdala. We studied the following three groups of rats: 1) artificial cerebrospinal fluid (CSF) infused in the NTS, 2) naltrexone (100 microg/day) infused for 13 days in the NTS, and 3) artificial CSF infused in the NTS of rats pair fed to the naltrexo...

متن کامل

Hypothalamic Orexin-A Neurons Are Involved in the Response of the Brain Stress System to Morphine Withdrawal

Both the hypothalamus-pituitary-adrenal (HPA) axis and the extrahypothalamic brain stress system are key elements of the neural circuitry that regulates the negative states during abstinence from chronic drug exposure. Orexins have recently been hypothesized to modulate the extended amygdala and to contribute to the negative emotional state associated with dependence. This study examined the im...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 17 13  شماره 

صفحات  -

تاریخ انتشار 1997